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The results in this talk come from the following manuscript:

(with X. Sun and L. Wang) Principal values of some integral
functionals of fractional Brownian motion, preprint 2019.
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§ 1. Background

In this talk, we consider the existence of the limit in L2 (resp.
almost surely)

K
H,f
t := lim

ε↓0

(∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H + ζH
t (ε)

)
, t ≥ 0,

where BH is a fractional Brownian motion with Hurst index
0 < H < 1, and f is not locally integrable, i.e., the integral∫ M

−M
|f (x)|dx = ∞ (∃M > 0).

The term ζH
t (ε) is defined as follows

ζH
t (ε) := L H(ε, t)g(ε) −L H(−ε, t)g(−ε),

where g is the primitive function of f and
L H(x, t) =

∫ t
0 δ(B

H
s − x)ds2H is the weighted local time of BH.
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§ 1. Background

It is important to note that if the limit

lim
ε↓0

ζH
t (ε)

exists in probability, we usually call the limit (in probability)

lim
ε↓0

∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H

the (Cauchy) principal value of the integral
∫ t

0 f (BH
s )ds2H, and it

also is denoted by

p.v.
∫ t

0
f (BH

s )ds2H .
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§ 1. Background

Example (1)

Let f (x) = 1
x . We have that g(x) = log x,

lim
ε↓0

ζH
t (ε) = 0

in L2 and almost surely and

p.v.
∫ t

0

1
BH

s
ds2H = lim

ε↓0

∫ t

0
1{|BH

s |>ε}

1
BH

s
ds2H

in L2 and almost surely.
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§ 1. Background

Example (2)

Let f (x) = 1
x − sign(x) sin x. We then have

lim
ε↓0

ζH
t (ε) = 2L H(0, t)

in L2 and almost surely and

p.v.
∫ t

0

1
BH

s
ds2H = lim

ε↓0

∫ t

0
1{|BH

s |>ε}
f (BH

s )ds2H

in L2 and almost surely.

We now consider the conditions which the limit limε↓0 ζ
H
t (ε)

exists in probability.
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§ 1. Background

Consider the decomposition

ζH
t (ε) = L H(ε, t)g(ε) −L H(−ε, t)g(−ε)

= L H(ε, t)
[
g(ε) − g(−ε)

]
+ g(−ε)

[
L H(ε, t) −L H(−ε, t)

]
for all t ≥ 0 and ε > 0.

By the continuity of x 7→ L H(x, t), when the function x 7→ g(x)
does not increase too fast at x = 0, for example, x

1−H
2H g(x)→ 0

(as x ↓ 0) we can get that

g(−ε)
[
L H(ε, t) −L H(−ε, t)

]
−→ 0 (ε ↓ 0)

in L2 and almost surely for all t ≥ 0.
Thus, lim

ε↓0
ζH

t (ε) exists in L2 and almost surely⇐⇒ the limit

lim
ε↓0

[
g(ε) − g(−ε)

]
= η

is finite.

An" Principal values of some integral functionals of FBM



§ 1. Background

Consider the decomposition

ζH
t (ε) = L H(ε, t)g(ε) −L H(−ε, t)g(−ε)

= L H(ε, t)
[
g(ε) − g(−ε)

]
+ g(−ε)

[
L H(ε, t) −L H(−ε, t)

]
for all t ≥ 0 and ε > 0.
By the continuity of x 7→ L H(x, t), when the function x 7→ g(x)
does not increase too fast at x = 0, for example, x

1−H
2H g(x)→ 0

(as x ↓ 0) we can get that

g(−ε)
[
L H(ε, t) −L H(−ε, t)

]
−→ 0 (ε ↓ 0)

in L2 and almost surely for all t ≥ 0.

Thus, lim
ε↓0

ζH
t (ε) exists in L2 and almost surely⇐⇒ the limit

lim
ε↓0

[
g(ε) − g(−ε)

]
= η

is finite.

An" Principal values of some integral functionals of FBM



§ 1. Background

Consider the decomposition

ζH
t (ε) = L H(ε, t)g(ε) −L H(−ε, t)g(−ε)

= L H(ε, t)
[
g(ε) − g(−ε)

]
+ g(−ε)

[
L H(ε, t) −L H(−ε, t)

]
for all t ≥ 0 and ε > 0.
By the continuity of x 7→ L H(x, t), when the function x 7→ g(x)
does not increase too fast at x = 0, for example, x

1−H
2H g(x)→ 0

(as x ↓ 0) we can get that

g(−ε)
[
L H(ε, t) −L H(−ε, t)

]
−→ 0 (ε ↓ 0)

in L2 and almost surely for all t ≥ 0.
Thus, lim

ε↓0
ζH

t (ε) exists in L2 and almost surely⇐⇒ the limit

lim
ε↓0

[
g(ε) − g(−ε)

]
= η

is finite.
An" Principal values of some integral functionals of FBM



§ 1. Background

Example (3)

Let f (x) = 1
(x)1+α

+

with 0 < α < 1−H
2H ∧

1
2 . We have that g(x) = 1

−αx−α,

lim
ε↓0

ζH
t (ε) = −

1
α

lim
ε↓0

ε−αL H(ε, t) = −∞

in L2 and almost surely and

lim
ε↓0

(∫ t

0
1{BH

s >ε}

1
(BH

s )1+α
ds2H −

1
α
ε−αL H(0, t)

)
= lim

ε↓0

∫ ∞

ε

L H(x, t) −L H(0, t)
x1+α

dx

= p.v.
∫
R

L H(x, t)
(x)1+α

+

dx

in L2 and almost surely.
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§ 1. Background

Let now the limit
lim
ε↓0

ζH
t (ε)

do not exist in probability.

If the limit

K
H,f
t := lim

ε↓0

(∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H + ζH
t (ε)

)
exists in probability, this limit is called the (Cauchy) principal
value (Hadamard’s finite part) of the integral

∫ t
0 f (BH

s )ds2H, and
it also is denoted by

p.v.
∫ t

0
f (BH

s )ds2H .
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§ 1. Background

When H = 1
2 , this question has been researched widely.

B: a standard Brownian motion with B0 = 0.

Some systematic and perfect studies:

K. Itô and H. P. McKean (1965) first considered the integral
functional in the next monograph:

K. Itô and H. P. McKean, Diffusion processes and their sample paths,
Springer Verlag, Berlin, New York, 1965.

M. Yor (1982) considered the special case

Ct(a) := p.v.
∫ t

0

ds
Bs − a

:= lim
ε↓0

∫ t

0
1{|Bs−a|>ε}

ds
Bs − a

.

and showed that 1
π Ct(·) coincides with Hilbert transform of

Brownian local time.
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K. Itô and H. P. McKean (1965) first considered the integral
functional in the next monograph:

K. Itô and H. P. McKean, Diffusion processes and their sample paths,
Springer Verlag, Berlin, New York, 1965.

M. Yor (1982) considered the special case

Ct(a) := p.v.
∫ t

0

ds
Bs − a

:= lim
ε↓0

∫ t

0
1{|Bs−a|>ε}

ds
Bs − a

.

and showed that 1
π Ct(·) coincides with Hilbert transform of

Brownian local time.

An" Principal values of some integral functionals of FBM



§ 1. Background

When H = 1
2 , this question has been researched widely.

B: a standard Brownian motion with B0 = 0.

Some systematic and perfect studies:
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§ 1. Background

T. Yamada (1984, 1985, 1986) also considered Ct(a) and the following
special case:

Sαt (a) = p.v.
∫ t

0

ds
(Bs − a)1+α

+

:= lim
ε↓0

{∫ t

0
1[a+ε,∞)(Bs)

ds
(Bs − a)1+α

− α−1ε−αL (a, t)
}

in L2 and − α
Γ(1−α)S

α
t (·) coincides with the fractional derivative of Brownian

local time.

=⇒ Yamada’s formulas:

Bt log |Bt | − Bt =

∫ t

0
log |Bs|dBs +

1
2
Ct(0),

(Bt)1−α
+ = (1 − α)

∫ t

0
(Bs)−α+ dBs −

1
2
α(1 − α)Sαt (0).

=⇒ occupation times formulas:∫
R

Sαt (a)f (a)da = α−1Γ(1 − α)
∫ t

0
(Dα

+ f )(Bs)ds,∫
R

Ct(x)g(x)dx = π

∫ t

0
(H g)(Bs)ds.
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§ 1 Background

P. Biane and M. Yor (1987), Bull. Sci. Math. 111, 23-101.

Specially, they showed that the density function of Ct(0) is
given by

P (Ct(0) ∈ dx) =

√
2
π3t

∞∑
n=0

(−1)n exp
{
−

(2n + 1)2

8t
x2

}
dx.

with t > 0.

J. Bertoin (1990), J. Math. Kyoto Univ. 30 (1990), 651-670.

(1) p-variations of t 7→ Ct(0) and t 7→ Sαt (0);
(2) The integrals of adapted processes with respect to Ct(0) and
Sαt (0).

E. Csáki, M. Csörgö, A. Földes, Y. Hu, Z. Shi and L. Zhang (1997 ∼ 2010)

Some limit theorems of t 7→ Ct(a) and t 7→ Sαt (a).

A.S. Cherny (2001), Principal values of the integral functionals of Brownian
motion, Lect. Notes Math. 1755, 348-370.
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E. Csáki, M. Csörgö, A. Földes, Y. Hu, Z. Shi and L. Zhang (1997 ∼ 2010)

Some limit theorems of t 7→ Ct(a) and t 7→ Sαt (a).

A.S. Cherny (2001), Principal values of the integral functionals of Brownian
motion, Lect. Notes Math. 1755, 348-370.

An" Principal values of some integral functionals of FBM



§ 1 Background

P. Biane and M. Yor (1987), Bull. Sci. Math. 111, 23-101.

Specially, they showed that the density function of Ct(0) is
given by

P (Ct(0) ∈ dx) =

√
2
π3t

∞∑
n=0

(−1)n exp
{
−

(2n + 1)2

8t
x2

}
dx.

with t > 0.

J. Bertoin (1990), J. Math. Kyoto Univ. 30 (1990), 651-670.

(1) p-variations of t 7→ Ct(0) and t 7→ Sαt (0);

(2) The integrals of adapted processes with respect to Ct(0) and
Sαt (0).
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A.S. Cherny (2001), Principal values of the integral functionals of Brownian
motion, Lect. Notes Math. 1755, 348-370.

An" Principal values of some integral functionals of FBM



§ 1. Background

However, in contrast to the extensive studies on the case
H = 1

2 , there has been little systematic investigation on such
integral functionals with H , 1

2 .

N. R. Shieh, J. Math. Kyoto Univ., 36 (1996), 641-652.

=⇒ Some limits associated with the following functionals:

F0(t) = LH(0, t), F1(t) = sup
x
LH(x, t)

F3(f , µ, t) =

∫
R

LH(x, t)f (x)µ(dx)

with LH(x, t) =
∫ t

0 δ(B
H
s − x)ds.

M. Eddahbi and J. Vives, J. Math. Kyoto Univ., 43 (2003), 349-368.

=⇒ Chaotic expansions of the processes

p.v.
∫ t

0

1
BH

s
ds, p.v.

∫ t

0

1
(BH

s )1+α
+

ds.
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§ 1. Background

Y. (2016, Math. Z.)

We considered the process

S
H,α
t (a) = p.v.

∫ t

0

ds2H

(BH
s − a)1+α

+

:= lim
ε↓0

{∫ t

0

1[a+ε,∞)(BH
s )ds

(BH
s − a)1+α

− α−1ε−αL (a, t)
}

in L2

with 0 < α < 1−H
2H ∧

1
2 and introduced the fractional Yamada

formulas:∫
R

S
H,α
t (a)f (a)da = 2Hα−1Γ(1 − α)

∫ t

0
(Dα

+ f )(BH
s )s2H−1ds

and

(BH
t − a)1−α

+ = (−a)1−α
+ + (1 − α)

∫ t

0
(BH

s − a)−α+ dBH
s −

1
2
α(1 − α)SH,α

t (a).

H = 1
2 : T. Yamada (1985).
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§ 1. Background

Sun/Y./Yu (2018, Stochastic Proc. Appl.)

We considered the process

CH
t (x) := p.v.

∫ t

0

1
BH

s − x
ds2H = lim

ε↓0

∫ t

0
1{|BH

s −a|>ε}
ds2H

BH
s − a

in L2

We introduced the fractional versions of Yamada’s formulas:∫
R

CH
t (x)g(x)dx = 2Hπ

∫ t

0
(H g)(BH

s )s2H−1ds

and

(BH
t − x) log |BH

t − x| − (BH
t − x)

= −x log |x| + x +

∫ t

0
log |BH

s − x|dBH
s +

1
2
CH

t (x).

H = 1
2 : T. Yamada (1984).
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§ 1. Background

As mentioned before, in this talk, we consider the limit

K
H,f
t := lim

ε↓0

(∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H + ζH
t (ε)

)
, t ≥ 0

in L2 and almost surely, where f is not locally integrable and

ζH
t (ε) := L H(ε, t)g(ε) −L H(−ε, t)g(−ε)

with g′ = f .

Our objects are

(1) to give the condition of existence;
(2) to introduce an extension of Itô’s formula by using the limit.

Denote

G+(x) =

∫ M

x
f (y)dy, x > 0

and

G−(x) =

∫ x

−M
f (y)dy, x < 0

for some M > 0.
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§ 1. Preliminaries: fractional Brownian motion

BH = {BH
t : t ≥ 0} : a fractional Brownian motion with Hurst

index H ∈ (0, 1), if it is a mean zero Gaussian process with
BH

0 = 0 such that

E
[
BH

s BH
t

]
=

1
2

(
t2H + s2H − |t − s|2H

)
, ∀s, t ≥ 0.

BH coincides with the standard Brownian motion B provided
H = 1/2.

BH is neither a semimartingale nor a Markov process unless
H = 1/2, so many of the powerful techniques from classical
Itô analysis of Brownian motion are not available when
dealing with BH.

BH admits some interesting properties: we omit them.
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§ 2 Preliminaries: Fractional Brownian motion

H : the reproducing kernel Hilbert space of fBm.

When 1
2 < H < 1 we have

H = {ϕ : [0,T]→ R | ‖ϕ‖H < ∞} ,

where

‖ϕ‖2
H

:= H(2H − 1)
∫ T

0

∫ T

0
ϕ(s)ϕ(r)|s − r|2H−2dsdr.

The elements of H may not be functions but distributions of
negative order (see, for instance, Pipiras and Taqqu (2001))
for 1

2 < H < 1.
When 1

2 < H < 1, we usually use the subspace

|H| =
{
ϕ : [0,T]→ R | ‖ϕ‖|H| < ∞

}
with

‖ϕ‖2
|H|

:= H(2H − 1)
∫ T

0

∫ T

0
|ϕ(s)||ϕ(r)||s − r|2H−2dsdr.
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§ 2 Preliminaries: Fractional Brownian motion

DH: the derivative operator (the Malliavin derivative) associate
with BH.

D1,2 denotes the subspace of L2 with the norm

‖F‖1,2 :=
√

E
(
|F|2

)
+ E

(
‖DHF‖2

H

)
, F ∈ D1,2.

The divergence δH is the adjoint of DH.

D1,2 ⊂ Dom(δH);

For an adapted process u, we denote
∫ t

0 usdBH
s = δH(u1[0,t])

(the fractional Itô integral).
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§ 2 Preliminaries: Fractional Brownian motion

When u ∈ D1,2 and 1
2 < H < 1, we have

E

(∫ T

0
usdBH

s

)2
= E‖u‖2

H
+ α2

HE
∫

[0,T]4
DH
ξ urDH

η us(|η − r||ξ − s|)2H−2dsdrdξdη

with αH = H(2H − 1).

When u < D1,2 and H , 1
2 ,

E

(∫ T

0
usdBH

s

)2 =??

This is a main motivation studying principal values associated
with fractional Brownian motion.
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§ 3. Main results: Existence of the Cauchy principal value

Let L H(t, x) denote the weighted local time.

Then, the occupation formula implies that∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H

=

∫ ∞

ε

[
f (x)L H(t, x) + f (−x)L H(t,−x)

]
dx

for any ε > 0.

Thus, the assumption
∫ M
−M |f (x)|dx = ∞ for some M > 0 =⇒

f is not even!
f (x), f (−x) . 0 for x > 0.

Thus, we get the following results.
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§ 3. Main results: Existence of the Cauchy principal value

Theorem (1)

Let f be continuous on R \ {0} such that
∫ N

−N
|f (x)|dx = ∞ for some N > 0. Then the

limit

lim
ε↓0

∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H

exists in probability (in L2) if and only if the following conditions are satisfied:

(i) for some M > 0, the following limit is finite:

lim
ε↓0

∫ M

−M
f (x)1{|x|>ε}dx;

(ii) for some M > 0, the following convergence hold:∫ M

0
G2

+(x)dx,
∫ 0

−M
G2
−(x)dx < ∞,

and
lim
ε↓0

ε
1−H
2H G+(ε) = 0, lim

ε↓0
ε

1−H
2H G−(−ε) = 0.
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§ 3. Main results: Existence of the Cauchy principal values

Theorem (2)

Let f be continuous on R \ {0} such that
∫ N

−N
|f (x)|dx = ∞ for some N > 0. Then the

limit

lim
ε↓0

∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H

exists almost surely if and only if conditions (i)-(ii) in Theorem 1 are satisfied and

∫ M

0

dx
x

exp

− αx
sup
{0<y≤x}

y2G+(y)2

 < ∞,
and ∫ 0

−M

dx
|x|

exp

− α|x|
sup
{x≤y<0}

y2G−(y)2

 < ∞
for any α > 0 and some M > 0.

H = 1
2 : A.S. Cherny (2001).
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sup
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and ∫ 0

−M

dx
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exp

− α|x|
sup
{x≤y<0}

y2G−(y)2

 < ∞
for any α > 0 and some M > 0.

H = 1
2 : A.S. Cherny (2001).
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§ 3. Main results: Existence of the Cauchy principal value

Example (4)

(1) f (x) = 1
x ;

(2) f (x) = 1
|x|1+γ sgn(x) with 0 ≤ γ < min{ 1−H

2H , 1
2 };

(3) f (x) = cotanh(x) = ex+e−x

ex−e−x .
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§ 3. Main results: Existence of the Cauchy principal value

Corollary (1)

Let f be continuous on R \ {0} such that
∫ N
−N |f (x)|dx = ∞ for some

N > 0. If (i) and (ii) in Theorem 1 hold, then the limit

lim
ε↓0

(∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H + ζH
t (ε)

)
exists in probability if and only if g(ε) − g(−ε) converges to a
constant as ε ↓ 0.
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§ 3. Main results: Existence of the Cauchy principal value

Corollary (2)

Let f be continuous on R \ {0} such that
∫ N
−N |f (x)|dx = ∞ for some

N > 0. Assume that (i) in Theorem 1 is false and that (ii) in
Theorem 1 is true, then the limit

p.v
∫ t

0
f (BH

s )ds2H = lim
ε↓0

(∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H + g(ε) − g(−ε)
)

exists in probability (in L2).
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§ 3. Main results: Existence of the Cauchy principal value

Example (5)

Taking f (x) = 1
(x+)1+α with 0 < α < 1−H

2H ∧
1
2 , we see that

lim
ε↓0

(∫ t

0
f (BH

s )1{|BH
s |>ε}

ds2H + ζH
t (ε)

)
= lim

ε↓0

(∫ t

0

1
(BH

s )1+α
1{BH

s >ε}
ds2H − α−1ε−αL H(0, t)

)
exists in L2.
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§ 3. Main results: An Itô formula

By using the obtained results we give an Itô formula including
the principal value.

Theorem (3)

Let 0 < H < 1 and let F be an absolutely continuous function on R such that F′ is
absolutely continuous on R \ {0}. Suppose that

(1) (i) and (ii) in Theorem 1 hold;

(2) F′(ε) − F′(−ε)→ β as ε ↓ 0,

then, we have

F(BH
t ) = F(0) +

∫ t

0
F′(BH

s )dBH
s +

1
2
βL H(0, t) +

1
2

p.v.
∫ t

0
F′′(BH

s )ds2H . (0.1)

Remark:

p.v.
∫ t

0
F′′(BH

s )ds2H = lim
ε↓0

∫ t

0
F′′(BH

s )1{|BH
s |>ε}

ds2H

in L2.

H = 1
2 : A.S. Cherny (2001).
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§ 3. Main results: An Itô formula

Example (6)

(1) F(x) = x log |x| − x =⇒ F′′(x) = 1
x and β = 0.

(2) F′′(x) = cotanh(x) = ex+e−x

ex−e−x =⇒ β = 0.

(3) F′′(x) = 1
|x|1+γ sgn(x) with 0 ≤ γ < min{ 1−H

2H , 1
2 } =⇒ β = 0.

(4)

F′′(x) =

1
x , if x > 0,
1
x + sin x, if x < 0,

=⇒ β = 1.
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Example (6)

(1) F(x) = x log |x| − x =⇒ F′′(x) = 1
x and β = 0.

(2) F′′(x) = cotanh(x) = ex+e−x

ex−e−x =⇒ β = 0.

(3) F′′(x) = 1
|x|1+γ sgn(x) with 0 ≤ γ < min{ 1−H

2H , 1
2 } =⇒ β = 0.

(4)

F′′(x) =

1
x , if x > 0,
1
x + sin x, if x < 0,

=⇒ β = 1.

An" Principal values of some integral functionals of FBM



§ 3. Main results: An Itô formula
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§ 3. Main results: An Itô formula

Theorem (4)

Let 0 < H < 1 and let F be an absolutely continuous function on R such that F′ is
absolutely continuous on R \ {0}. Suppose that

(1) F′(ε) − F′(−ε) −→ ∞ as ε ↓ 0;

(2) the condition (i) in Theorem 1 with f = F′′ is false;

(3) the condition (ii) in Theorem 1 with f = F′′ is true,

then, we have

F(BH
t ) = F(0) +

∫ t

0
F′(BH

s )dBH
s +

1
2

p.v
∫ t

0
F′′(BH

s )ds2H . (0.2)

Remark:

p.v
∫ t

0
F′′(BH

s )ds2H = lim
ε↓0

(∫ t

0
F′′(BH

s )1{|BH
s |>ε}

ds2H + F′(ε) − F′(−ε)
)
.
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§ 4. A related question

Now, we consider a related question.

Consider the Hardy operator H on L2([0, 1], ds) defined by

Hf (u) =

∫ 1

u

f (x)
x

dx

with u ∈ (0, 1].

Then, Hardy’s inequality

‖Hf ‖L2[0,1] ≤ 2‖f ‖L2[0,1]

holds for all f ∈ L2([0, 1], ds).

L2: the reproducing kernel Hilbert space of Brownian motion
=⇒ the following Hardy type inequality.
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§ 4. A related question

Lemma (An extension of Hardy’s inequality)

Let 1
2 < H < 1. Then we have

‖Hf ‖|H| ≤ CH‖f ‖|H|

for all f ∈ |H|. Moreover, when 0 < H ≤ 1
2 we have

‖Hf ‖H ≤ CH‖f ‖H

for all f ∈ H .

By using the inequality, we introduce the next convergence.
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§ 4. A related question

Proposition (1)

When 1
2 < H < 1, the convergence

lim
ε↓0

∫ 1

ε
f (s)BH

s
ds
s

=

∫ 1

0
Hf (s)dBH

s

exists in L2 and almost surely for all f ∈ |H|. Moreover, when
0 < H ≤ 1

2 , the above convergence also holds for all f ∈ H .
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§ 4. A related question

Proposition (2)

When 1
2 < H < 1, the convergence

lim
ε↓0

∫ 1

ε
f (y)

dy
y

∫ t

0
1[|BH

s |≤y]dBH
s =

∫ t

0
1(|BH

s |≤1)Hf
(
|BH

s |
)

dBH
s

exists in L2 and almost surely for all f ∈ |H|. Moreover, when
0 < H ≤ 1

2 , the above convergence also holds for all f ∈ H .
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§ 4. A related question

Corollary

For 1
2 < H < 1, the convergence

lim
ε↓0

∫ t

ε

(
BH

s

s

)2

ds

exists in L2 and almost surely, for 0 < H ≤ 1
2 , the above limit does

not exist in probability.
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